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Abstract

This paper provides preliminary work in an aim to fundamentally understand the e↵ects
of temperature fluctuations in the dynamics of biological oscillators. Motivated by circadian
rhythms, we are interested in understanding how time-varying temperatures might play a role
in the properties of biochemical oscillators. This paper investigates time-dependent Arrhenius
scaling of biochemical networks with delays. We assume these time-delays arise from a sequence
of simpler reactions that can be modeled as an aggregate delay. We focus on a model system, the
Goodwin oscillator, in which we use time-varying rate coe�cients as a mechanism to understand
the possible e↵ects of temperature fluctuations. The emergence of delays from a sequence of
reactions can be better understood through the Goodwin model. For a high order system and
comparably high reaction rates, one can approximate the large sequence of reactions in the
model with a delay, which can be interpreted as the time needed to go through the “queue”.
Such types of delays can arise in the process of transcription for example. To study how these
delays are a↵ected by temperature fluctuations, we take the limit as the order of the system and
the mean reaction rates approach infinity with a periodically time-varying rate coe�cient and
obtain periodically time-varying delays. We show that the limit cycle of the Goodwin oscillator
varies only in the limit when the oscillator frequency is much larger than the frequency of
temperature oscillations. Otherwise, the instantaneous frequency of the oscillator is dominated
by the mean value of the time-varying temperature.

1 Introduction

Studying temperature dependence in biochemical networks remains important and, yet, less un-
derstood in oscillators. Much related research has come about through the study of circadian
rhythms. It is well known that circadian clocks robustly maintain a 24 hr period, typically thought
to be entrained by light, as can be seen in a detailed model of the mammalian circadian clock
proposed in [6] by Leloup and Goldbeter. Temperature dependence in circadian clocks has been
slowly emerging as a topic of interest. Lahiri et al. [5] presents a compelling argument to consider
temperature dependence as a strong driving factor in the zebrafish circadian clock but, mainly,
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past work on time-varying Arrhenius scaled rate constants in oscillators has been seen in the study
of temperature compensation of circadian clocks. Current theoretical work utilizes mathematical
conditions that minimize sensitivity of the period to changes in temperature to reverse engineer a
temperature compensating model. For example, Hong et al. [4] provide a theory for how tempera-
ture compensation might work in circadian oscillators which depends on a balance of temperature
dependent e↵ects. Takeuchi et al. [12] use a similar concept to determine rate constants in a more
detailed model taken from Gonze et al. [3], which is then modified to include temperature depen-
dence. Ruo↵ et al. [10] use the same method to determine rate constants, as they consider the
Goodwin model to study temperature e↵ects. Results for time-varying rate coe�cients are found
numerically and for a small order system.

In this paper, we investigate how delays in biochemical networks are a↵ected by periodically
time-varying temperatures. Incorporating delays in models of biological systems has allowed sci-
entists to simplify models, while maintaining qualitative similarities to experimental data [2,11].
This has allowed researchers to identify key functional components of larger networks. Motivated
by circadian oscillators, we identify the correct way of incorporating delays in an Arrhenius scaled
biochemical network with periodically time-varying temperature. Specifically, we consider the case
where the number of chain chemical reactions approach infinity as the reaction rates, also, approach
infinity. In essence, this provides a model for a system with a large number of consecutive chemical
reactions happening almost instantaneously. For example, one may consider this a good model for
the process of transcription. We analytically determine the e↵ective delays that arise in the open
loop system driven by periodically time-varying Arrhenius scaled rate coe�cients and find that
they are also time-dependent. We characterize the time-varying delays based on properties of the
time-varying rate coe�cient. Last, we study the limit cycle of the resulting Goodwin model as we
close the system with a nonlinearity in feedback.

After closing the loop, we demonstrate through simulation that the frequency of the limit cycle
is robust with respect to changes in the frequency or phase of the periodically time-varying rate
coe�cients. Simulations suggest the frequency of the limit cycle is dominated by the mean of the
time-varying rate coe�cient.

2 Delays in the Goodwin model

We now show how delays in biological systems can be derived from the Goodwin model. Consider
the Goodwin oscillator of order N + 1,

ẋ0 =
1

1 + x2
N

� ↵x0

ẋ
j

= �a(x
j

� x
j�1) for j = 1, ..., N. (1)

We would like to take the limit as N !1 in such a way that N

a

remains constant. First, consider
the frequency response of the N linear di↵erential equations with input x0 and output x

N

[9]. We
arrive at

H
x0!x

N

=
aN

(s+ a)N
(2)

and take the limit of the delay distribution function in the frequency domain,

lim
N!1

H
x0!x

N

. (3)

2



time (s)

x
N

E = 15

E = 30

Figure 1: Open loop simulation with step input for di↵erent E and N = 10, 000.

After rearranging the terms and making substitution E = N/a, taking the limit in the frequency
domain gives

lim
N!1

1

( sE
N

+ 1)(N)
=

1

esE
= e�sE , (4)

which is exactly the frequency response for a delta function �(t�E) in the time domain. Therefore,
the distribution function will approach a delta function centered at E as N !1.

In general, system (1) can be represented as a distributed delay di↵erential equation [7]

ẋ0 =
1

1 + x2
N

� ↵x0,

x
N

=

Z 1

0
h(⌧)x0(t� ⌧)d⌧, (5)

where

h(⌧) =
aN⌧N�1

(N � 1)!
e�a⌧ (6)

and
R1
0 h(⌧)d⌧ = 1. Note E = N/a is the mean of the distribution function (6). In the limit as

N !1, system (1) becomes

ẋ0 =
1

1 + x0(t� E)2
� ↵x0. (7)

It is worth noting that this specific limit only exists in this framework where all the reaction rates
are the same but this simplification helps us to gain insight. In addition, in the limit as N ! 1
the rates must also approach infinity for the distribution to approach a delta function.

We term the mean of the distribution E = N/a, the e↵ective delay. Note that for an increased
temperature (increased a), the e↵ective delay decreases. These results only hold for a constant
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reaction rate a. Figure 1 shows simulations for a unit step input into the open loop system (without
the nonlinearity in feedback) for di↵erent e↵ective delays. We would now like to investigate how
the distribution function changes with a periodically time-varying rate coe�cient a(t).

3 Delay Distribution Function for Time-Varying Reaction Rates

We investigate the e↵ects of temperature fluctuations on the delay distribution resulting from a
sequence of chemical reactions. We begin by considering the following open loop system

ẋ0 = �a(t)x0 + a(t)u(t),

ẋ
j

(t) = �a(t)(x
j

(t)� x
j�1(t)) for j = 1, ..., N. (8)

Note that the reaction rate a(t) is a function of time. Assuming that the rate coe�cient’s depen-
dence on temperature can be described by the Arrhenius equation of the form

a(t) = Ae�E

a

/(RT (t)),

oscillations in temperature T (t) will result in oscillations in the rate coe�cient a(t). Furthermore,
increasing temperature, increases the rate coe�cient a as expected. We simplify the model by
assuming a(t) is a sinusoidal function with a given period, amplitude, and mean value.

3.1 Derivation of the Distribution Function

Now we proceed to find the distribution function in continuous time. We can put system (8) into
state space form

Ẋ(t) = A(t)X(t) +B(t)u(t) (9)

with matrices

A(t) = a(t)

2

666664

�1 1 0 . . . 0
0 �1 1
...

. . .
. . .

�1 1
0 . . . 0 �1

3

777775
(10)

and

B(t) =

2

6664

0
...
0

a(t)

3

7775
. (11)

Note that A(t1)A(t2) = A(t2)A(t1) for any t1 and t2. Accordingly, we can write the solution as

X(t) = exp

✓Z
t

t0

A(s)ds

◆
X(t0) +

Z
t

t0

exp

✓Z
t

⌧

A(s)ds

◆
B(⌧)u(⌧)d⌧. (12)

We rewrite this expression into a distributed delay format

X(t) = exp

✓Z
t

t0

A(s)ds

◆
X(t0) +

Z
t

t0

exp

✓Z
t

t�⌧

A(s)ds

◆
B(t� ⌧)u(t� ⌧)d⌧. (13)
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The structure of the system allows for further simplification. Note the Jordan block like structure
of the system. With this we find

exp

✓Z
t

t�⌧

A(s)ds

◆
= exp

✓Z
t

t�⌧

a(s)ds J�1,N+1

◆
(14)

where J�1,N+1 is the N + 1 Jordan matrix with eigenvalues �1. Defining

↵(⌧)
.
=

Z
t

t�⌧

a(s)ds, (15)

the exponential can be computed and is given by

e↵(⌧)J�1,N+1 =

2

66666664

e�↵(⌧) ↵(⌧)e�↵(⌧) . . . ↵(⌧)N�1

(N�1)! e
�↵(⌧) ↵(⌧)N

N ! e�↵(⌧)

↵(⌧)N�1

(N�1)! e
�↵(⌧)

?
...

↵(⌧)e�↵(⌧)

e�↵(⌧)

3

77777775

(16)

where ? denotes non-zero entries that are irrelevant due to the structure of B(t) and our desired
output. For our desired output we apply from the left C = [1, 0, . . . , 0], so that

h(⌧) = C e↵(⌧)J�1,N+1B(t� ⌧), (17)

and only the top right element of the exponential matrix is needed. This gives the delay distribution
function

h(⌧) = a(t� ⌧)
↵(⌧)N

N !
e�↵(⌧). (18)

This solution holds for a general a(t), but we would like to investigate a periodically time-varying
reaction rate coe�cient

a(t) = �
a

sin(wt+ �) + a0. (19)

Just as was done for a constant reaction rate a, we would like to see what happens as we take the
limit as N !1 such that N/a0 remains constant for the time-varying a(t) above.

The delay distribution obtained is time dependent. To study how the delay distribution changes
with the phase and period of the temperature fluctuations, we consider the shape of the distribution
at time t = 0. One can interpret the delay distribution as the probability density function of the
time it takes to get through the “queue” modeled by a sequence of chemical reactions. Figures 2
and 3 show the distribution functions for di↵erent rate coe�cients a(⌧) in equation (19). Although
the frequency of variation of a(t) in the second figure is unrealistically high, it is interesting to
see the shape the distribution takes. Also, note that the behavior as � changes is similar to the
behavior one would expect as time evolves. This will be demonstrated in a later section.

3.2 The Distribution Function in the Limit as N !1

We now proceed to take the limits as N !1 such that N/a0 remains constant as was considered
in the first section. In order to take the limit, we apply Stirling’s formula for large N , namely

N ! ⇡
p
2⇡N

✓
N

e

◆
N

(20)
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Figure 2: Distribution function for time-varying a(t) (solid line) and constant a(t) = a0 (dashed
line) with di↵erent periods and phase shifts for a(t) with parameters a0 = 8.4, �

a

= .5 a0, E = 15,
and N = 125.
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and get

h(⌧) = a(t� ⌧)
↵(⌧)N

N !
e�↵(⌧) (21)

⇡ a(t� ⌧)p
2⇡N

✓
e↵(⌧)

N

◆
N

e�↵(⌧). (22)

We substitute a(t� ⌧) as defined in equation (19) and correspondingly ↵(⌧) as in equation (15),

↵(⌧) =
�
a

w
[cos(w(t� ⌧) + �)� cos(w t+ �)] + a0⌧. (23)

For N � 1

E =
N + 1

a0
⇡ N

a0
. (24)

Rearranging terms in equation (22), after making our substitutions, we get

h(⌧) ⇡ 1p
2⇡E

✓
e↵(⌧)

N

◆
N

a
1
2
0 (�

p

sin(w(t� ⌧) + �) + 1) e�↵(⌧) (25)

⇡ 1p
2⇡E

✓
e↵(⌧)

N

◆
N

✓
N

E

◆ 1
2

(�
p

sin(w(t� ⌧) + �) + 1) e�↵(⌧) (26)

⇡ 1p
2⇡E

✓
↵(⌧)

N
e1�↵(⌧)/N

◆
N

✓
N

E

◆ 1
2

(�
p

sin(w(t� ⌧) + �) + 1) . (27)
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Here �
a

= �
p

a0, where �
p

represents our percent change in a0. Note

↵(⌧)

N
=

�
p

wE
[cos(w(t� ⌧) + �)� cos(wt+ �)] +

1

E
⌧ (28)

does not depend on N in a way a↵ected by the limit. We define

K(⌧)
.
=

↵(⌧)

N
e1�↵(⌧)/N (29)

and investigate the limit for di↵erent ranges of K. For K < 1

lim
N!1

N
1
2

1/KN

= lim
N!1

�1
2 N

�1
2

�N/KN+1
= lim

N!1

KN+1

2N3/2
= 0 (30)

and for K � 1

lim
N!1

N
1
2

1/KN

=
1
0

=1. (31)

It remains to show that K  1 for all ⌧ . We would like to determine when K reaches its maximum
value. As a necessary condition for an extremum we must have

d

d⌧
(K) =

d

d⌧

✓
↵(⌧)

N

◆
e1�

↵(⌧)
N

✓
1� ↵(⌧)

N

◆
= 0. (32)

Since the first two terms are always strictly positive, we find that an extremum occurs at ⌧e↵ where

1� ↵(⌧e↵)

N
= 0, (33)

which can be rewritten as Z
t

t�⌧e↵

�
p

E
sin(ws+ �) +

1

E
ds = 1. (34)

A larger E leads to larger ⌧e↵ and vice versa. In addition, for increasing E and frequency w, one
can make the approximation,

⌧e↵ ⇡ E

alternatively, as w ! 0,

⌧e↵ ⇡
E

�
p

sin�+ 1
.

Plugging equation (33) back into equation (29), we note K = 1 at the extremum. It can be easily
shown that

d2

d2⌧
(K) > 0, (35)

therefore, the extremum is a maximum. We see that in the limit as N !1, h(⌧) is zero everywhere
for all ⌧ , except for at ⌧e↵ when K(⌧) = 1, where h(⌧) =1. It is easy to verify that equation (33)
has at minimum a single solution; the solution is the intersection of the line

f1 = 1� 1

E
⌧ +

�
p

wE
cos(w t+ �) (36)

and the cosine function

f2 =
�
p

wE
cos(w(t� ⌧) + �). (37)

It is not as obvious that only one solution exists but this can be shown by applying the mean value
theorem [1].
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Theorem 3.1. If f 2 C[a, b] and f is di↵erentiable on (a, b), then a number c in (a, b) exists with

f 0(c) =
f(b)� f(a)

b� a
.

Using the fact that the derivative of f2 is bounded,

d

d⌧
f2 =

�
p

E
sin(w(t� ⌧) + �) � ��

p

E
(38)

and the slope of the line f1 is �1/E, it holds for all ⌧ that

d

d⌧
f1 <

d

d⌧
f2 (39)

for �
p

2 (0, 1). By consequence of the mean value theorem, there cannot exist two points f2(a)
and f2(b) connected by a line with slope less than ��

p

/E, hence, f1 cannot intersect more than
one point on f2. Therefore, equation (33) is a global maximum and we can make the case that we
have a delta function centered at the solution ⌧e↵ in the limit (we necessarily have

R1
0 h(⌧)d⌧ = 1).

Note that Z 1

0
h(⌧)d⌧ =

Z 1

0
a(t� ⌧)

↵(⌧)N

N !
e�↵(⌧)d⌧ =

Z

C

↵N

N !
e�↵d↵, (40)

where the last integral is a path integral along the curve ↵(⌧). The curve ↵(⌧) is a periodic function
that oscillates about a linear function of ⌧ . We have ↵(⌧) is an injective function (d↵(⌧)/d⌧ =
a(t� ⌧) > 0) with ↵(0) = 0 and ↵(1) =1. Therefore, the path integral must equal one.

We investigate how the e↵ective delay ⌧e↵ changes with time. We define �̃(t) = w t+� and note
that the e↵ective delay is a function of time and periodic with the same frequency w as that of the
rate coe�cient. Plots of ⌧e↵ are shown as a function of time in Fig. 4 for di↵erent �. Figure 5 shows
simulations for the open loop system (8) with an applied step input at time t = 0 for di↵erent �̃
with N = 10, 000. The delay in the step response should correspond to the triangular markers in
Fig. 4. The triangular makers indicate when the delay is equal to the time that has passed since
the step input was applied at t = 0.

The plots in Fig 6 show ⌧e↵ as a function of frequency of a(t) at time t = 0. Recall that, as
time evolves, each point on the curves in Fig 6 varies periodically. In order to characterize the
time-dependent delay as a function of the parameters of a(t), the average value and peak-to-peak
amplitude of ⌧e↵ is plotted against parameters �

p

, E, and w(Hz) in Fig. 7.

4 Closed-Loop System

We now close the open loop system (8) with a nonlinearity in negative feedback

u =
1

1 + (x
N

/K
x

)2
, (41)

where we choose K
x

= .1 to ensure oscillations. The closed loop system is then given by

ẋ0 = a(t)x0 + a(t)
1

1 + (x̃0/Kx

)2

x̃0 =

Z 1

0
h(⌧)x0(t� ⌧)d⌧. (42)
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Figure 5: Open loop simulation with step input for di↵erent � for N = 10, 000, �
p

= .5, w = ⇡/E,
and E = 15.
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Left: Plot for period values less than or equal to 15. Right: Plot for period values larger that 15.

In the limit as N !1 with N/a0 constant we have

ẋ0 = a(t)x0 + a(t)
1

1 +
⇣
x0(t�⌧(t))

K

x

⌘2 (43)

where ⌧(t) is periodically time-varying delay.
Let us return to the Goodwin model with a constant rate coe�cient. The describing function

method allows us to approximate the frequency and amplitude of the resulting limit cycle, should a
limit cycle exist. See [8] for a more detailed description on harmonic balancing and the describing
function method. The frequency of the limit cycle depends only on the linear part of the system,
while the nonlinearity determines the amplitude of the limit cycle. Using the describing function
method the predicted frequency of the presumed limit cycle is

! = a0 tan

✓
⇡

N + 1

◆
(44)

with the period T = 2⇡
!

. This is assuming the nonlinearity gives rise to a limit cycle. For N � 1
we have the approximation

! ⇡ a0
⇡

N + 1
(45)

which gives
T ⇡ 2E. (46)

Equality holds in the limit as the distribution function approaches a delta function.
For the time-varying a(t) it is interesting to note that we still obtain a delta function in the

limit, however, it is no longer necessarily centered at E = N+1
a0

but oscillates around it with a
frequency determined by the frequency of the temperature fluctuations and amplitude determined
by the relative size of the perturbation and possibly frequency as indicated in Fig. 7. For small
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perturbations, one would expect the limit cycle to have a frequency close to that of the nominal
system with a(t) = a0. We choose a relatively large perturbation of �

p

= .5 and investigate how
the limit cycle changes as the period of a(t) increases. Figure 8 shows simulations of the closed
loop system for N = 10, 000 and E = 15 for varying periods of a(t). It is apparent that the period
of the limit cycle is robust to oscillatory fluctuations in a(t). The period remains close to 2E for
a large range of frequencies w. As the period gets really large, there is an apparent change in the
frequency of the limit cycle over time. There is a higher frequency at high temperatures and a
lower frequency at decreasing temperatures. This gives a limit cycle whose frequency appears to
also be periodically changing with time.

This is further investigated in Fig. 9. The time span of the last simulation in Fig. 8 is extended
and analyzed further. The middle plot in Fig. 9 shows ⌧e↵ as a function of time for T = 400s and
the bottom plot shows the single-sided amplitude spectrum of x

N

(t) obtained by taking the fast
Fourier transform of the signal. The vertical lines indicate the frequencies corresponding to the
period of the limit cycle we would expect given a constant delay at the minimum and maximum
values achieved by ⌧e↵

Next, we investigate whether there occurs entrainment with a change is phase. As was shown,
di↵erent phases � for a(t) lead to changes in the e↵ective delay. We investigate the e↵ects on the
phase of the output x

N

of the closed loop system. Just as circadian clocks experience a phase shift
when we overcome jet lag, we investigate whether there is a similar e↵ect with temperature, namely,
is there entrainment. If the period changes even slightly, there is a phase shift that changes linearly
as a function of time, however, there is also an initial phase shift due to the change in ⌧e↵ . As the
reactions approach a delta function, we can imagine that if we go from a(t) = a0 to time-varying
a(t) at t = 0, we essentially change the delay in the loop, e↵ectively adding

e�s(⌧e↵(0)�E)
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Figure 9: Top: Extended simulation from Fig. 8 with T = 400. Middle: ⌧e↵ as a function of time.
Bottom: Single-sided amplitude spectrum of x

N

(t)
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Figure 10: Simulations for di↵erent � with constants �
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= .5, E = 15 and w = ⇡/E.

with associated phase �w(⌧e↵(0) � E) in radians, which we expect to be the phase change. A
positive term in the exponential does not make sense on its own since that would assume we have
information of future states (no longer a delay) but in this case it is reasonable because when added
to e�sE it remains a delay, just a smaller delay. Figure 10 shows simulations for di↵erent phase
shifts �. The shift in the fall of the signal corresponds to the predicted phase shift but because the
width of oscillations change, the actual change in phase is much smaller. In this case, the phase
shift seems to be cut by half of what is predicted and the frequency of oscillations remain fairly
robust to phase shifts.

5 Conclusion

We have shown how delays in chemical reaction networks are a↵ected by periodically driven rate
coe�cients, particularly, in the Goodwin model. Ultimately we would like to understand how
temperature comes into play in circadian oscillators. The periodically time-varying rate functions
model temperature fluctuations which are correlated with time of day. It was found that periodic
temperature fluctuations induce periodically time-varying delays. In the closed loop, the period of
the limit cycle is most strongly influenced by the average value of the rate coe�cient. The mean
temperature changes from day-to-day and even more drastically from season to season. We have
shown robustness of the period with respect to temperature fluctuations. Next, we would like to
investigate mechanisms by which an oscillator may be robust to changes in the mean temperature
using a delay-based model of a circadian oscillator. In contrast to simply tuning rate constants to
get temperature compensation, we would like to explore more fundamental designs that give way
to such properties.
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[3] Didier Gonze, José Halloy, and Albert Goldbeter. Robustness of circadian rhythms with respect
to molecular noise. Proc. Natl. Acad. Sci. U.S.A., 99(2):673–678, January 2002.

[4] Christian I. Hong, Emery D. Conrad, and John J. Tyson. A proposal for robust temperature
compensation of circadian rhythms. Proc. Natl. Acad. Sci. U.S.A., 104(4), 2007.

[5] Kajori Lahiri, Daniela Vallone, Srinivas Babu Gondi, Cristina Santoriello, Thomas Dickmeis,
and Nicholas S. Foulkes. Temperature regulates transcription in the zebrafish circadian clock.
PLoS Biology, 3(11):2005–2016, November 2005.

[6] Jean-Christophe Leloup and Albert Goldbeter. Towards a detailed computation model for the
mammalian circadian clock. Proc. Natl. Acad. Sci. U.S.A., 100(12):7051–7056, June 2003.

[7] N. MacDonald. Time lag in a model of a biochemical reaction sequence with product inhibition.
Journal of Theoretical Biology, 67(3):549–556, August 1977.

[8] A.I. Mees. Dynamics of Feedback Systems. John Wiley and Sons, 1981.
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